

Can Learning Analytics Help to Understand the Learning Process?

Jari Multisilta, professor, director University Consortium of Pori, Finland

 $A alto\ University\ |\ Tampere\ University\ of\ Technology\ |\ University\ of\ Tampere\ |\ University\ of\ Turku\ |\ {\color{red}www.ucpori.fi}$

Background

- Google, Amazon and Facebook created a trend to collect data from the users of the service.
- Processing and understanding the massive user data creates business intelligence. So the data is a crucial asset for these companies.
- This is how we get better search results, suggestions for music or books that might interest us etc.

Three strands of analytics for learning

- Educational data mining focused on the technical challenge:
 How can we extract value from these big sets of learning-related data?
- Learning analytics focused on the educational challenge: How can we optimize opportunities for online learning?
- Academic analytics focused on the political/economic challenge: How can we substantially improve learning opportunities and educational results at national or international levels?

Traditional data vs. Big Data

 Traditional data is structured (SQL databases, XML data).
 Big Data can be unstructured or multi structured (for example large amounts of Twitter text feed).

The Use of Educational Data

- Administrative purposes
- Evaluation of activities (indicators: frequencies)
- Improving the course content (indicators: challenges in some exercises)
- Assessment (testing, automatic assessment vs. peer review)
- Providing personal support for the learner (suggesting learning topics)
- Top 5% of students in any course could be interesting group from the point of view of any company who would like to recruit new talent.
- Achieving grades from online learning.

Typical Research Areas

- Individual learning
- Computer supported collaborative learning
- Testing
- Adaptive learning environments
- Factors associated with student failure or non-retention
- Student modeling (knowledge, motivation, meta-cognition, attitudes, boredom, self-efficacy)
- Knowledge domain modeling
- Pedagogical aspects of online learning (support)
- Educational theories for online learning

Learning Analytics

- Learning Analytics collect and analyze the traces the students leave to the learning environment (LMS, MOOC, game). Learning analytics is the big data for education.
- Aim: to find correlations between student activities and learning outcomes.
- Identify students who are likely to fail (or drop) the course.
- Identify those parts in the course that cause most difficulties to students.
- "Learning analytics is the use of intelligent data, learnerproduced data, and analysis models to discover information and social connections, and to predict and advise on learning." (Siemens, 2010).

Aalto University | Tampere University of Technology | University of Tampere | University of Turku | www.ucpori.fi

Data sources

- Learning environments designed for educational data collection for specific events.
- General data collection, such as web navigation data.
 - For example Google Analytics, Piwik (open source web analytics)
- As always, the quality of the data dictates the usefulness of the data - GIGO, Garbage in, Garbage out.

Data from general tools

- *Hits*. Measures the total number of requests for text, images, etc. the web server receives for a given page.
- *Visits*. The number of visitors to a particular site or page and *time* spent at the site.
- *Unique Visitors*. The number of site visits by different users, also the rate of *new vs.* returning visitor.
- *Page Views*. The number of times any page was viewed by any visitor.
- Bounce rate. Bounce rate is the percentage of visits where the visitor left your site after viewing only one page. This metric is typically used to measure visit quality.

- Top Entry and Exit Pages. Refers to the pages on which most visitors enter your site.
- Visitor Information. The country or region, the web browser, mobile/desktop user, OS, etc. Google Analytics adds the service provider and device information.
- Click Paths or Tracks. Graphical representations of typical paths through the site. Google Analytics adds user defined events.

Data from specific tools

- Based on the content and the activities the user can do.
- Events (for example answers to a multiple choice question, selection of a specific menu choice) that have a meaning in the *context*.
- Have to be designed as a part of the system.
 - Difficult to transfer to other systems, not easy to compare to data from other systems.

Case: mobile video storytelling

What do we already know related to a video clip in MoViE

- The number of comments posted (daily/weekly/monthly)
- The number of annotations added (daily/weekly/monthly)
- The number of links to video clips inside MoViE (daily/weekly/monthly)
- The number of views (daily/weekly/monthly)
- Tags, length, author, upload date, number of ratings, mean rate, number of queries, location (not in every video)
- Annotations, links inside annotations

What can we identify from the data

- the clips that have the most annotations
- the clips that have links outside MoViE
- the clips that have the most tags/comments/ratings/views
- the authors that have the most tags/comments/ratings/views
- the authors who create the most annotations, comments
- the users that have the most video uploads (daily/weekly/monthly) inside a class/group

Case: mobile video storytelling

What do we know of a MoViE user:

- Number of uploads
- User's role (moderator i.e. teacher or normal user)
- Number of remixes
- Moderator, trusted, groups that the user belongs
- Media user has uploaded or remixed
- Remixing phase: we should save the original media id's

We can find:

- whose clips have been used the most (most inclusions to remixes)
- the clusters of users/remixers who are using each others clips in their remixes.

Aalto University | Tampere University of Technology | University of Tampere | University of Turku | www.ucpori.fi

